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Abstract

Deep learning has advanced video denoising, yet state-
of-the-art networks are compute intensive, making them un-
suitable for real-time applications like video conferencing.
Conversely, lightweight networks often assume known cam-
era noise parameters limiting their use for uncalibrated we-
bcams common in conferencing setups. This paper intro-
duces a noise estimation and normalization framework for
adapting lightweight neural denoisers to diverse webcams.
We train off-the-shelf compact neural networks on synthet-
ically added noise, simplifying denoising via input normal-
ization with known noise parameters. During testing, we
perform a one-time noise parameter estimation using ini-
tial video frames, which informs subsequent denoising. This
optimization entails freezing the trained model and using
gradient descent to solve for the noise parameters. We min-
imize the reconstruction loss, relying on estimated ground
truth obtained by temporally averaging static pixels in the
test video stream. We show that our method improves de-
noising performance of lightweight neural networks on pub-
licly available datasets with synthetic noise and also pro-
vide examples on real data.

1. Introduction
Digital noise is a common issue in many video confer-

encing setups. It can be caused by low-quality or small sen-
sors on webcams, or by poor lighting conditions. Video
noise degrades the quality of the video, leading to difficul-
ties in discerning participants and undermining the overall
user experience.

Advances in deep learning have also improved video de-
noising algorithms [10, 14, 16, 20–23]. The state-of-the-art
approaches use large neural networks trained on a wide va-
riety of noise profiles. However, these approaches are com-
putationally expensive and cannot be used in low-latency
real-time video calls.

A common approach to simplify the problem is to train a
neural network for a specific camera of which noise param-
eters are known, e.g., using calibration [12, 19]. While this

*Work done during internship at Google.

leads to lightweight neural networks tailored to the noise
profile, it does not generalize across cameras. Further noise
calibration can be expensive or cumbersome. This is espe-
cially problematic for webcams, given the wide variety of
webcams available and the lack of a consistent API that can
provide the noise parameters of the camera.

We propose a solution that allows off-the-shelf
lightweight neural networks to be trained once and then be
used on a wide variety of webcams. Our method doesn’t re-
quire any extra computing, except for a one-time optimiza-
tion that can be done at the beginning of the video.

We leverage the observation in [19], that given a param-
eterized noise model and known noise parameters, one can
train a lightweight neural network if we normalize the in-
put image so that the noise statistics become invariant to the
light level and additive sensor noise. While such networks
can be trained on synthetic data where the noise parame-
ters are known, the challenge lies in applying them to real-
world webcams where noise parameters remain unknown.
Our key insight is that the noise parameters of a webcam
can be learned at test time. We exploit the fact that webcams
are stationary and many pixels in a typical video stream dur-
ing a conference call are static, e.g., the pixels in the back-
ground. The denoised “ground-truth” values of these static
pixels can be obtained by averaging observations across the
first few frames of the video. We optimize noise parame-
ters such that the prediction of the pre-trained model aligns
with the “ground-truth” values when the model input is nor-
malized by them. Since the network and the normalization
steps are differentiable, we can use gradient descent to opti-
mize for these. The low dimensionality of noise parameters
alleviates any risk of overfitting even when using a small
number of frames. Moreover, our framework extends to
estimating additional camera pipeline variables that affect
noise statistics, such as the gamma correction factor.

We show that using our approach of normalization
and test-time optimization allows various off-the-shelf
lightweight neural networks to do better denoising. We
perform quantitative experiments on the publicly available
dataset REDS [15] using synthetic noise. Quantitative ex-
periments show that the proposed method accurately esti-
mates the three noise parameters, and boosts the denoising
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Figure 1. Overview of the proposed noise estimation and normalization framework. During training, we use ground-truth noise
parameters γ∗, L∗, σ∗ to normalize noisy frames and train a lightweight denoiser Θ. During test time, we freeze the denoiser Θ and
optimize noise parameters γ, L, σ to minimize the difference between restored and ground-truth clean images in the background.

performance of the original neural network across different
light levels and sensors that have different gamma correc-
tions. We also collected several real video conferencing
clips, with various webcams from on-the-market laptops,
different lighting conditions, and different subjects. We
show qualitative results on the collected real video dataset.

Our contributions are as follows:

• We model the noisy images using three noise parameters,
light level L, sensor additive noise σ, and gamma correc-
tion coefficient γ, and apply a transformation function to
normalize the effect of noise parameters.

• We propose a novel test-time noise parameter estimation
method, which adapts off-the-shelf compact neural net-
works to denoise for various unknown webcams in video
conferences.

• We conduct experiments on REDS dataset by synthesiz-
ing realistic noise. We also collect several video confer-
encing clips to evaluate the proposed algorithm.

2. Related work
Learning-based denoisers. With the recent advances in
learning-based approaches, image and video denoising per-
formance has seen large improvements [10, 14, 16, 20–23].
State-of-the-art (SOTA) learning-based denoisers restore
high fidelity images from a wide variety of noisy images,
both synthetic and real-world, but often have high compu-
tational overhead. MIRNet [23] learns enriched features
through a heavy network that extracts multi-scale features,
exchanges information among scales, and exploits spatial
and channel attention. DEAMNet [16] proposes a maxi-
mum a posterior (MAP) method with a new adaptive con-
sistency prior, and unrolls each iteration of solving MAP
into a learning-based module. MPRNet [14] is a multi-
path residual network that contains several residual con-
catenation block, adaptive residual blocks, and a two-fold
attention module. Yang et al. [21] exploits diffusion model

for real-world denoising by designing a linear interpolation
method that guarantees the diffusion process starts with a
clean image and ends with the real-world noisy image, but
their method is slow due to the iterative inference in dif-
fusion models. Liang et al. [10] and UFormer [20] both
use transformers, and more recently, Zamir et al. [22] pro-
poses a relatively efficient transformer with two novel net-
work designs, multi-head attention and feed-forward net-
work. However, all above-mentioned methods have a com-
putation complexity of over 40 Gigabytes floating points
operations for a 256 × 256 image [22] and are impracti-
cal for real-time video conferences denoising.

Lightweight denoisers. Many works design compact
neural network for real-time denoising [12,19]. Maggioni et
al. [12] exploits predictions from previous frame in videos
and designs a three-stage denoising framework, each of
which contains a lightweight convolution neural network.
Wang et al. [19] is the most relevant to our work. They
propose a k-Sigma transformation function to normalize
the effect of different ISO settings, and train a lightweight
UNet [17] with the normalized image pairs. Using this
transformation, they demonstrate that the small UNet de-
noise as well as a much larger UNet. However, both meth-
ods require a fully calibrated sensor, RAW noisy images,
and ISO values in the meta information. If deploying these
methods for video conferencing, one has to calibrate a wide
variety of webcams, not to mention that RAW images and
metadata are not easily accessible from all webcams. Our
innovation lies in developing a test-time noise estimation
framework that avoids calibration, and showing that other
steps of the imaging pipeline, e.g., gamma correction can
be folded into the same framework.

3. Noise Modeling and Normalization
We first introduce the parameterized noise model, and

how we normalize the noise statistics across images with
different webcams and various lighting conditions.



Given a noisy frame y, the goal is to estimate the clean
image x∗. By Gaussian-Heteroskedastic noise model [5],
the noisy frame y can be formalized as

y = Γ{g(Lx∗
l + nshot + n)}, (1)

where Lx∗
l is the expected number of photons arrive at each

sensor diode, nshot is the shot noise, n is the additive sen-
sor noise before the amplifier, g is the amplifier gain, and
Γ(·) is the gamma correction function. We ignore post-
amplifier readout noise, quantization, and other steps in the
ISP pipeline, such as auto white balancing, demosaicing,
and tone mapping for simplicity.

The expected number of photon arrivals Lx∗
l is a multi-

plication between the maximum photon arrival at given ex-
posure time L and the expected clean intensity image x∗

l in
linear space, where x∗

l ∈ [0, 1] and x∗ = Γ(x∗
l ). Shot noise

nshot is approximated as a signal-dependent Gaussian ran-
dom variable [5] and follows nshot ∼ N (0, Lx∗

l ). We refer
to L as the light level that characterizes the scene bright-
ness while assuming a fixed exposure time. Additive sensor
noise n follows a Gaussian distribution n ∼ N (0, σ2), σ
is the additive noise standard deviation in electron counts.
Since front-facing webcams often have fixed exposure time
and compensate for the brightness of scenes by automati-
cally changing the gain, we let g = 1

L , such that the max-
imum intensity of the captured frames always reaches the
reference intensity of 1 [2]. We approximate the family of
gamma encoding function Γ(·) with a power function with
different coefficients 1/γ.

We therefore simplify the noisy frame y to be

y = (x∗
l +

nshot

L
+

n

L
)1/γ , (2)

and the linearized noisy image yγ follows a Gaussian dis-
tribution [5]

yγ ∼ N (x∗
l ,

x∗
l

L
+

σ2

L2
). (3)

The variance changes with the scene light level L and sensor
additive noise standard deviation σ. The variance of yγ de-
scribes the noisiness of a pixel and can guide a denoiser al-
gorithm through determining its denoising strength. There-
fore, designing a neural network to denoise videos from var-
ious webcams would require a large number of parameters,
so that the networks can fit various distributions. And the
computation overhead is often too large for video confer-
encing applications. We hypothesize that a denoising neu-
ral network may implicitly estimate these three parameters
during the prediction of the denoised image. Since these
three parameters do not change for a given webcam in the
same scene, estimating them in every frame is a waste of
model capacity.

Noise normalization. According to Wang et al. [19], nor-
malizing different noise profiles allows a compact neural
network to denoise as well as a heavy network. Based on
our noise parameterization, we apply the following map-
ping function to the noisy frame to normalize the effect of
L, σ, γ

f(y) = Lyγ + σ2. (4)

In this way, f(y) ∼ N (Lx∗
l +σ2, Lx∗

l +σ2), which means
f(y) ∼ N (f(x∗), f(x∗)). f(y) is agnostic to light level,
sensor additive noise, and gamma coefficient since f(y)
only depends on the normalized image f(x∗). Neural net-
works that take f(y) as input and predict f(x∗) can be de-
signed to be much more compact as the input follows a more
constrained distribution.

4. Denoisers for uncalibrated webcams
By applying the noise normalization function, Wang et

al. [19] trained lightweight deep neural networks to de-
noise for various cameras with known noise parameters. In
our situation, even though the noise parameters are avail-
able in the training data, they are not in the testing data
captured from uncalibrated webcams. The challenge for
uncalibrated webcams is how to estimate their noise pa-
rameters during test time. In this section, we describe the
lightweight denoiser training and test-time noise parame-
ters estimation. Using the proposed framework, we are able
to adapt lightweight denoisers to handle a large variety of
webcams and under different light conditions.

4.1. Training lightweight denoisers

During training, we apply ground-truth L∗, σ∗, γ∗ to
noisy frames y and their ground-truth clean frames x∗ ac-
cording to Eq. 4, and train a lightweight network Θ with
the normalized frames {f(y), f(x∗)}. The trained neural
network Θ̂ is

Θ̂ = argmin
Θ

L(Θ(f(y)), f(x∗)). (5)

We utilize ℓ1 as the loss function. And we train two pop-
ular lightweight backbones, ConvNeXt [11] and Efficient-
Net [18]. They are trained for 100,000 and 200,000 it-
erations correspondingly. The network is optimized by
Adam [9], where β1 = 0.9, β2 = 0.999. We adopt an
initial learning rate of 1× 10−4 and a batch size of 32. The
image crop size is 256× 256.

4.2. Test-time noise adaptation

While ground-truth noise parameters are accessible dur-
ing training, they are unknown in test time for uncalibrated
webcams and unknown light conditions. We propose a one-
time optimization of L, σ, γ for an unknown webcam in a
single video session. By applying the estimated noise pa-
rameters, we are able to adapt the pre-trained lightweight



denoiser to restore videos from the same webcam in the
same video session.

The basic idea is that if we can find noisy-clean image
pairs from the test dataset, we can feed them to the denois-
ing model while freezing its parameters and only optimizing
the noise parameters. Even though the clean image corre-
sponding to a given noisy image is not directly available
during test time, we can create an estimated clean back-
ground image by accumulating samples from the stationary
background. When the noisy parameters are optimized well
enough, the restored clean background is the most similar
to the estimated clean background.

Estimate one clean frame. In most video conferences,
the webcams are stationary and the background scene be-
hind the person stays static across frames. Since the noise
parameters are shared across the background and the fore-
ground, we can leverage the estimation from the back-
ground to denoise the entire frame and all subsequent
frames in the entire video session. To estimate a clean back-
ground, we first segment out the background regions us-
ing off-the-shelf person segmenters, produce a background
mask for each frame, and take the intersection of all back-
ground masks from the first N frames. We also remove
saturated pixels with an intensity over 0.95 as saturation
breaks the noise model in Equation 1. We denote the in-
tersected mask from all frames as m. When computing the
clean background, we first linearize all N noisy frames by
inverse gamma correcting them with a coefficient of 2.2,
average the linearized noisy frames, and then apply gamma
correction to the averaged frame. Note that we assume the
noise to be signal independent here, as done in [7], and show
empirically that this does not affect the estimation of noise
parameters. The resulting clean frame is denoted as x̂ and
is used as the supervision in noise parameter estimation.
Note that our algorithm typically requires that the camera
is steady for the first 50 frames, which is equivalent to ∼2
seconds for a 24 frame-per-second video.

Noise parameter optimization. As shown in Figure 1,
during test time, we freeze the lightweight denoiser Θ and
only optimize for the three noise parameters.

L̂h, σ̂h, γ̂h = arg min
Lh,σh,γh

L(xpred ◦m, x̂ ◦m),

(6)

where xpred = f−1{Θ̂[f(y;L, σ, γ)];L, σ, γ}
L = h1(Lh), σ = h2(σh), γ = h3(γh).

We multiply both the restored image xpred and clean image
x̂ with a mask m using Hadamard multiplication to remove
the loss from the foreground and saturated region. The re-
stored image xpred is computed by sequentially applying

normalization function f(·), the frozen denoising network
Θ̂(·), and inverse normalization f−1(·). In order to con-
strain light level L to be a non-negative value, we apply a
softplus function to the variable, L = h1(Lh) = 10 log(1+
e0.1Lh). To match human perception, gamma correction
usually has a coefficient larger than 1 [13]. We therefore
constrain γ to be greater than 1 by applying another softplus
function γ = h3(γh) = 1+10 log(1+e0.1γh). We also map
additive readout noise σ to a common range of σ ∈ [0, 5]
electrons using a sigmoid function, σ = h2(σh) = 5/(1 +
e−0.1σh). We use a weighted sum of PSNR, SSIM, and ℓ1
as our loss function, L = w1LPSNR + w2LSSIM + w3ℓ1,
where we used w1 = −1, w2 = 0, w3 = 0 for synthetic
REDS datasets, and w1 = 0, w2 = −0.425, w3 = 0.15 for
real video conferencing dataset. We still use Adam [9] as
the optimizer and optimize them for 2000 iterations.

Denoising. After the noise parameters are estimated, we
map them to the constrained space L̂ = h1(L̂h), σ̂ =

h2(σ̂h), γ̂ = h3(γ̂h), and we plug in L̂, σ̂, γ̂ to normalize all
frames in the video and feed the normalized noisy frames to
the pre-trained lightweight deep denoisers to restore clean
frames.

5. Experiments
We describe our experimental settings, compare the pro-

posed framework with baseline lightweight neural networks
on synthetic and real-world data, and finally we show abla-
tion studies.

5.1. Settings

Datasets. We use the high-quality video dataset
REDS [15] and synthesize photorealistic noise on the
videos. We also use a self-collected real video conferenc-
ing dataset.

• REDS [15]. We use 240 and 20 videos for training and
testing respectively. Each video is 24 fps and contains 100
frames. We use the original high-quality video frames as
ground-truth clean and add photorealistic noise on the fly
to emulate noisy frames.

• Video Conferencing dataset. We collect a video con-
ferencing dataset consisting of 27 videos. The dataset is
captured with webcams from three commonly seen on-
the-market laptops with various qualities and noise pro-
files. We record videos of three subjects talking in video
conferences. The videos are shot under dim, normal, and
bright light conditions. Dim light condition corresponds
to video conference at night with limited lights turned on,
normal light condition is for indoors and sufficient light,
and bright refers to outdoors with sunlight. Each video
clip contains 120 frames.
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Figure 2. Optimized noise parameters and their ground-truth.
The upper row shows estimated parameters by freezing pre-trained
ConvNeXt and the lower by EfficientNet. From left to right are
predictions of light level L, additive noise standard deviation σ,
and gamma correction coefficient γ. Blue lines are ground-truth
values, box plots are predicted noise parameters from 20 videos
in REDS eval dataset, and the orange line inside each box is the
average prediction.

Comparisons. We train on two off-the-shelf backbones,
ConvNeXt [11] and EfficientNet [18] because of their
efficient design and suitability for real-time applications.
ConvNeXt modernizes ResNet [8] by introducing depth-
wise convolution, inverted bottleneck design, and using
a larger kernel size, GELU activation to achieve better
efficiency and accuracy tradeoff. EfficientNet is a family
of network architectures that are scaled up from a baseline
architecture by compound model scaling. We adopt the
baseline EfficientNet-B0. We use ConvNeXt and Efficient-
Net as backbone feature extractors and add a decoder with
skip connections to restore images of the same resolution
as the input images. For each backbone, we train it without
and with the proposed noise normalization. We also
compare with traditional denoiser BM3D [4]. We use the
BM3D implementation from FFMPEG [1] with parameters
bm3d=sigma=<SIGMA>:block=4:bstep=2:group
=1:estim=basic, where the parameter <SIGMA> con-
trols the denoising strength. We chose different <SIGMA>
for datasets of different light levels to achieve the best
denoising results. <SIGMA> equals to 150, 100, 60, and 30
for the datasets with light levels of 16dB, 20dB, 24dB, and
27dB, respectively.

Training. We use the high-quality frames from the REDS
dataset as ground-truth clean frames and add noise on the
fly according to Eq. 3. We fix the gamma correction coeffi-
cient to γ∗ = 2.2. For each training sample, we randomly

sample the light level L∗ from [50, 500] electrons, a typical
range for a webcam sensor to capture an indoor environ-
ment with a fixed frame rate. We randomly sample the ad-
ditive noise standard deviation σ∗ from [3, 5] electrons. For
vanilla backbones, we train them with noisy and clean im-
age pairs. For backbones with noise normalization, we first
normalize the noisy and clean images with their L, σ∗, γ∗

and then train them with the normalized pairs.

Testing. We evaluate our algorithm on both synthetic
dataset and real video conferencing dataset. For synthetic
dataset, we use the REDS evaluation set with four differ-
ent noise levels. The noise levels are controlled by set-
ting scene light levels L∗ = 50, 100, 250, 500 electrons and
fixing σ∗ = 4.0, γ∗ = 2.2, which produces images that
roughly have a signal-to-noise-ratio of 16dB, 20dB, 24dB,
and 27dB. For the proposed method, we utilize the first
noisy frame and its ground-truth clean frame for noise pa-
rameter estimation, and apply them to the rest 99 frames
in each video clip. For real-world videos, we test baseline
ConNeXt and ours on self-collected videos. For the pro-
posed method, we conduct a one-time noise parameter op-
timization using the first 50 frames of each video clip and
apply them to normalize all noisy frames using the rest 70
frames in the same video.

5.2. Main experiments

We compare the estimated noise parameters at test-time
with the ground-truth noise parameters. As shown in Fig-
ure 2, the upper row is results with ConvNeXt and the lower
row is with EfficientNet. From left to right, we show esti-
mation and ground-truth for L, σ, γ. Noisy images are syn-
thesized with four noise settings with increasing light lev-
els L∗ = {50, 100, 250, 500}, fixed σ∗ = 4.0, and fixed
γ∗ = 2.2. For each noise setting, we estimate L, σ, γ for
20 videos in the REDS eval set, and visualize them in box
plots. Ground-truth values are shown in blue dashed lines.
Both ConvNeXt and EfficientNet estimations are close to
the ground truth, and ConvNeXt results are more concen-
trated. We notice that the mean of light level estimation is
biased towards smaller values for ConvNeXt in set 4. Since
a smaller light level indicates a smaller signal-to-noise-
ratio, we hypothesize that ConvNeXt predicts a smaller
light level to apply a larger denoising strength, which is
preferable by the loss function.

In Table 1, we compare lightweight backbones trained in
a vanilla style and with the proposed noise normalization.
Both backbones have FLOPs at around 0.2G and are com-
putationally efficient. For EfficientNet, ours is on par with
the baseline on REDS-16dB and REDS-20dB and achieves
better performance than the baseline when the noise level
is low. On average, EfficientNet with normalization has
higher PSNR and SSIM than the baseline EfficientNet. For
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Figure 3. (b) shows two crops from an input image (a) from the REDS dataset. (c) and (f) show synthetically degraded inputs with
different levels of noise, (d) and (g) show corresponding results from the baseline ConvNeXt model while (e) and (h) show results from
our approach. Our approach is able to recover more details, e.g., the shadow of the pole and the horizontal slats in the top row, the striped
pattern in the second row, the cloth pattern in the third row, and the brick pattern on the ground in the bottom row, while also removing
noise.

REDS-16dB REDS-20dB REDS-24dB REDS-27dB

Figure 4. Comparing ConvNeXt w/wo. normalization with an increasing network capacity. The upper row shows PSNRs and the
lower shows SSIM. From left to right, four columns show the REDS dataset with four different noise settings. The x-axis of each plot is the
FLOPs of each ConNeXt model, and the y-axis is the metric. Higher values are better. Our approach improves the results at all capacities
and for all input noise levels.

ConvNeXt, which is more compact than EfficientNet, ours
are consistently better than baseline at all noise levels, and
the average PSNR is higher than baseline by 0.94dB and
SSIM by 0.03. Overall, the proposed framework is able to
increase the performance of lightweight denoisers in diverse
noise conditions.

We evaluate the proposed and baseline ConvNeXt on
REDS with different gamma corrections at test time. We fix
the light level and sensor additive noise and vary γ from 1.2

to 4.2, a common range for camera gamma encoding [6].
Note that both ConvNeXt models are trained with images
encoded by γ = 2.2. As shown in Table 2, the performance
of baseline ConNeXt is realatively good when γ = 1.2, 2.2
but starts to drop quickly as γ increases. The proposed
method generalizes well and achieves better performance
across all γ’s.

Figure 3 shows qualitative results from REDS dataset.
We show the same scene with two different noise levels at



REDS-16dB REDS-20dB REDS-24dB REDS-27dB Average
FLOPs PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Input — 17.08 0.2712 20.73 0.4139 25.60 0.6174 29.21 0.7501 23.16 0.5132
BM3D — 21.16 0.4319 28.08 0.7790 31.24 0.8638 33.28 0.9017 28.44 0.7441

EfficientNet 0.23G 28.70 0.7828 31.66 0.8565 35.03 0.9106 37.15 0.9331 33.14 0.8708
EfficientNet + normalization 0.23G 28.52 0.7865 31.55 0.8715 35.39 0.9358 37.97 0.9612 33.36 0.8888

ConvNeXt 0.18G 28.23 0.7712 30.99 0.8483 34.45 0.9069 37.07 0.9322 32.69 0.8647
ConvNeXt + normalization 0.18G 29.07 0.8011 31.86 0.8777 35.55 0.9380 38.02 0.9616 33.63 0.8946

Table 1. Comparing the proposed method with baseline lightweight denoisers. We show quantitative results on REDS eval set with
four different noise settings. From left to right, the noise level decreases. We evaluate the performance of all methods using PSNR and
SSIM, both metrics are higher the better. Our noise normalization increases the performance of baseline ConvNeXt and EfficientNet while
keeps FLOPs the same.

REDS-20dB / γ = 1.2 REDS-20dB / γ = 2.2 REDS-20dB / γ = 3.2 REDS-20dB / γ = 4.2 Average

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

ConvNeXt 31.55 0.8576 30.99 0.8483 27.31 0.7644 23.87 0.6609 28.43 0.7610
ConvNeXt-Ours 32.98 0.9009 31.86 0.8777 29.28 0.8229 26.91 0.7651 30.26 0.8417

Table 2. Comparing ConvNeXt on videos with various gamma correction functions. Both methods are trained with images that are
encoded by γ = 2.2. We test both methods on images with various gammas γ = 1.2, 2.2, 3.2, 4.2. The performance of baseline ConvNeXt
decreases fast as γ increases, while ours generalize well to different γ’s. And ours are consistently better than baseline.

16dB and 24dB. Compared to baseline ConvNeXt, ours are
able to remove excessive noise while preserving details.

5.3. Ablation study

We evaluate the proposed noise normalization for Con-
vNeXt with an increasing capacity, including ConvNeXt-
T, ConvNeXt-S, and ConvNeXt-B listed in Liu et al.’s
work [11], and show PSNR and SSIM in Figure 4. The
ConvNeXt capacity increases from 0.18 Gigabytes floating
point operations (FLOPs) to 2.70 Gigabytes FLOPs for a
256 × 256 image. The results show that our normalization
framework is able to improve the performance of ConvNeXt
in various capacities.

Average PSNR ↑ Average SSIM ↑
20 frames 32.05 0.8726
100 frames 32.10 0.8726
241 frames 32.13 0.8722

GT clean frame 32.16 0.8723

Table 3. The effect of using different number of noisy frames
to estimate clean a clean frame. We compute the averaged PSNR
and SSIM on REDS dataset of noise levels from 16dB to 24dB.

We examine how many frames should be averaged to
get the desired clean frame. We gradually increase N from
20 to 241 and compare the estimated clean with that using

Average PSNR ↑ Average SSIM ↑
No normalization 31.22 0.8391
Normalize L, σ 31.51 0.8654
Normalize L, σ, γ 32.16 0.8723

Table 4. Comparing noise normalization w/wo. γ coefficient.
We compute the averaged PSNR and SSIM on REDS dataset of
noise levels from 16dB to 24dB.

ground-truth clean. When N = 20, the denoised PSNR is
only 0.11dB smaller than that from the ground-truth. This
indicates that a small number of frames is able to produce
decent noise estimation and therefore denoising results.

We ablate the effect of normalizing gamma correc-
tion. We trained ConvNeXt with a linear mapping function
f(y) = Ly + σ2 and only estimate L, σ in test time. As
shown in Table 4, compared to no normalization, normal-
ization with L, σ increases the PSNR and SSIM by 0.29dB
and 0.0263. Adding γ to the normalization further achieves
the best performance.

5.4. Results on real data

In Figure 5, we present qualitative results obtained from
our video conferencing dataset. In general, we find our
real video dataset is much more challenging than synthetic
datasets. The quality difference is not as obvious as re-
sults on the synthetic dataset. In the uppermost row, our
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Figure 5. Results on real data. (a) shows input frame from a noisy video captured using a webcam, (b) shows the masked estimated
ground truth computed from the first 50 frames of the video, (c) shows results from the ConvNeXt model while (d) shows results from the
ConvNeXt method using our framework. Please zoom in to see details.

approach exhibits slightly better noise reduction capabili-
ties compared to the baseline method, e.g., on the face. But
sometimes our method tends to blur the high-frequency de-
tails from the input as seen in the bottom row. We also no-
tice certain artifacts such as image darkening which might
be due to the numerical stability of optimization which we
leave as future work. Please see the supplementary material
for more results.

The limitation of our method on real videos can also be
attributed to the inherent simplicity of our image process-
ing pipeline model. We hypothesize that the integration of
additional steps of the imaging pipeline, such as auto white
balance, demosaicing, and tone mapping, as in [3], could
mitigate these artifacts.

6. Conclusion

We described an approach to adapt lightweight neural
networks to uncalibrated webcams using a framework that
uses normalization and test-time noise estimation. Our
method does not add any additional compute except for a

one-time optimization that can be done at the beginning of
a video call. We also showed that our framework can incor-
porate steps from image processing pipeline, e.g., gamma
correction, as long as they are differentiable and can be pa-
rameterized by low dimensional variables.

We did experiments on data with synthetically added
noise and showed that our method can boost the perfor-
mance of existing lightweight neural networks. We also
collected and tested our method on a real-world dataset.
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